scx_rlfifo/main.rs
1// Copyright (c) Andrea Righi <andrea.righi@linux.dev>
2
3// This software may be used and distributed according to the terms of the
4// GNU General Public License version 2.
5
6//! # Round-Robin Linux kernel scheduler that runs in user-space
7//!
8//! ## Overview
9//!
10//! This is a fully functional Round-Robin scheduler for the Linux kernel that operates
11//! in user-space and it is 100% implemented in Rust.
12//!
13//! It dequeues tasks in FIFO order and assigns dynamic time slices, preempting and
14//! re-enqueuing tasks to achieve basic Round-Robin behavior.
15//!
16//! The scheduler is designed to serve as a simple template for developers looking to implement
17//! more advanced scheduling policies.
18//!
19//! It is based on `scx_rustland_core`, a framework that is specifically designed to simplify the
20//! creation of user-space schedulers, leveraging the Linux kernel's `sched_ext` feature (a
21//! technology that allows to implement schedulers in BPF).
22//!
23//! The `scx_rustland_core` crate offers an abstraction layer over `sched_ext`, enabling developers
24//! to write schedulers in Rust without needing to interact directly with low-level kernel or BPF
25//! internal details.
26//!
27//! ## scx_rustland_core API
28//!
29//! ### struct `BpfScheduler`
30//!
31//! The `BpfScheduler` struct is the core interface for interacting with `sched_ext` via BPF.
32//!
33//! - **Initialization**:
34//! - `BpfScheduler::init()` registers the scheduler and initializes the BPF component.
35//!
36//! - **Task Management**:
37//! - `dequeue_task()`: Consume a task that wants to run, returns a QueuedTask object
38//! - `select_cpu(pid: i32, prev_cpu: i32, flags: u64)`: Select an idle CPU for a task
39//! - `dispatch_task(task: &DispatchedTask)`: Dispatch a task
40//!
41//! - **Completion Notification**:
42//! - `notify_complete(nr_pending: u64)` Give control to the BPF component and report the number
43//! of tasks that are still pending (this function can sleep)
44//!
45//! Each task received from dequeue_task() contains the following:
46//!
47//! struct QueuedTask {
48//! pub pid: i32, // pid that uniquely identifies a task
49//! pub cpu: i32, // CPU previously used by the task
50//! pub flags: u64, // task's enqueue flags
51//! pub sum_exec_runtime: u64, // Total cpu time in nanoseconds
52//! pub weight: u64, // Task priority in the range [1..10000] (default is 100)
53//! pub nvcsw: u64, // Total amount of voluntary context switches
54//! pub slice: u64, // Remaining time slice budget
55//! pub vtime: u64, // Current task vruntime / deadline (set by the scheduler)
56//! }
57//!
58//! Each task dispatched using dispatch_task() contains the following:
59//!
60//! struct DispatchedTask {
61//! pub pid: i32, // pid that uniquely identifies a task
62//! pub cpu: i32, // target CPU selected by the scheduler
63//! // (RL_CPU_ANY = dispatch on the first CPU available)
64//! pub flags: u64, // task's enqueue flags
65//! pub slice_ns: u64, // time slice in nanoseconds assigned to the task
66//! // (0 = use default time slice)
67//! pub vtime: u64, // this value can be used to send the task's vruntime or deadline
68//! // directly to the underlying BPF dispatcher
69//! }
70//!
71//! Other internal statistics that can be used to implement better scheduling policies:
72//!
73//! let n: u64 = *self.bpf.nr_online_cpus_mut(); // amount of online CPUs
74//! let n: u64 = *self.bpf.nr_running_mut(); // amount of currently running tasks
75//! let n: u64 = *self.bpf.nr_queued_mut(); // amount of tasks queued to be scheduled
76//! let n: u64 = *self.bpf.nr_scheduled_mut(); // amount of tasks managed by the user-space scheduler
77//! let n: u64 = *self.bpf.nr_user_dispatches_mut(); // amount of user-space dispatches
78//! let n: u64 = *self.bpf.nr_kernel_dispatches_mut(); // amount of kernel dispatches
79//! let n: u64 = *self.bpf.nr_cancel_dispatches_mut(); // amount of cancelled dispatches
80//! let n: u64 = *self.bpf.nr_bounce_dispatches_mut(); // amount of bounced dispatches
81//! let n: u64 = *self.bpf.nr_failed_dispatches_mut(); // amount of failed dispatches
82//! let n: u64 = *self.bpf.nr_sched_congested_mut(); // amount of scheduler congestion events
83
84mod bpf_skel;
85pub use bpf_skel::*;
86pub mod bpf_intf;
87
88#[rustfmt::skip]
89mod bpf;
90use std::mem::MaybeUninit;
91use std::time::SystemTime;
92
93use anyhow::Result;
94use bpf::*;
95use libbpf_rs::OpenObject;
96use scx_utils::UserExitInfo;
97
98// Maximum time slice (in nanoseconds) that a task can use before it is re-enqueued.
99const SLICE_NS: u64 = 5_000_000;
100
101struct Scheduler<'a> {
102 bpf: BpfScheduler<'a>, // Connector to the sched_ext BPF backend
103}
104
105impl<'a> Scheduler<'a> {
106 fn init(open_object: &'a mut MaybeUninit<OpenObject>) -> Result<Self> {
107 let bpf = BpfScheduler::init(
108 open_object,
109 0, // exit_dump_len (buffer size of exit info, 0 = default)
110 false, // partial (false = include all tasks)
111 false, // debug (false = debug mode off)
112 false, // builtin_idle (false = idle selection policy in user-space)
113 )?;
114 Ok(Self { bpf })
115 }
116
117 fn dispatch_tasks(&mut self) {
118 // Get the amount of tasks that are waiting to be scheduled.
119 let nr_waiting = *self.bpf.nr_queued_mut();
120
121 // Start consuming and dispatching tasks, until all the CPUs are busy or there are no more
122 // tasks to be dispatched.
123 while let Ok(Some(task)) = self.bpf.dequeue_task() {
124 // Create a new task to be dispatched from the received enqueued task.
125 let mut dispatched_task = DispatchedTask::new(&task);
126
127 // Decide where the task needs to run (pick a target CPU).
128 //
129 // A call to select_cpu() will return the most suitable idle CPU for the task,
130 // prioritizing its previously used CPU (task.cpu).
131 //
132 // If we can't find any idle CPU, keep the task running on the same CPU.
133 let cpu = self.bpf.select_cpu(task.pid, task.cpu, task.flags);
134 dispatched_task.cpu = if cpu >= 0 { cpu } else { task.cpu };
135
136 // Determine the task's time slice: assign value inversely proportional to the number
137 // of tasks waiting to be scheduled.
138 dispatched_task.slice_ns = SLICE_NS / (nr_waiting + 1);
139
140 // Dispatch the task.
141 self.bpf.dispatch_task(&dispatched_task).unwrap();
142 }
143
144 // Notify the BPF component that tasks have been dispatched.
145 //
146 // This function will put the scheduler to sleep, until another task needs to run.
147 self.bpf.notify_complete(0);
148 }
149
150 fn print_stats(&mut self) {
151 // Internal scx_rustland_core statistics.
152 let nr_user_dispatches = *self.bpf.nr_user_dispatches_mut();
153 let nr_kernel_dispatches = *self.bpf.nr_kernel_dispatches_mut();
154 let nr_cancel_dispatches = *self.bpf.nr_cancel_dispatches_mut();
155 let nr_bounce_dispatches = *self.bpf.nr_bounce_dispatches_mut();
156 let nr_failed_dispatches = *self.bpf.nr_failed_dispatches_mut();
157 let nr_sched_congested = *self.bpf.nr_sched_congested_mut();
158
159 println!(
160 "user={} kernel={} cancel={} bounce={} fail={} cong={}",
161 nr_user_dispatches,
162 nr_kernel_dispatches,
163 nr_cancel_dispatches,
164 nr_bounce_dispatches,
165 nr_failed_dispatches,
166 nr_sched_congested,
167 );
168 }
169
170 fn now() -> u64 {
171 SystemTime::now()
172 .duration_since(SystemTime::UNIX_EPOCH)
173 .unwrap()
174 .as_secs()
175 }
176
177 fn run(&mut self) -> Result<UserExitInfo> {
178 let mut prev_ts = Self::now();
179
180 while !self.bpf.exited() {
181 self.dispatch_tasks();
182
183 let curr_ts = Self::now();
184 if curr_ts > prev_ts {
185 self.print_stats();
186 prev_ts = curr_ts;
187 }
188 }
189 self.bpf.shutdown_and_report()
190 }
191}
192
193fn print_warning() {
194 let warning = r#"
195**************************************************************************
196
197WARNING: The purpose of scx_rlfifo is to provide a simple scheduler
198implementation based on scx_rustland_core, and it is not intended for
199use in production environments. If you want to run a scheduler that makes
200decisions in user space, it is recommended to use *scx_rustland* instead.
201
202Please do not open GitHub issues in the event of poor performance, or
203scheduler eviction due to a runnable task timeout. However, if running this
204scheduler results in a system crash or the entire system becoming unresponsive,
205please open a GitHub issue.
206
207**************************************************************************"#;
208
209 println!("{}", warning);
210}
211
212fn main() -> Result<()> {
213 print_warning();
214
215 // Initialize and load the FIFO scheduler.
216 let mut open_object = MaybeUninit::uninit();
217 loop {
218 let mut sched = Scheduler::init(&mut open_object)?;
219 if !sched.run()?.should_restart() {
220 break;
221 }
222 }
223
224 Ok(())
225}